A CHARACTERIZATION OF G-SPACES

BY PETER D. TAYLOR

ABSTRACT

Two theorems of Effros about G-spaces are proved without his hypothesis of separability.

Proposition 1 gives a proof, without the hypothesis of separability, of a lemma of Effros [1, Lemma 6.2] which describes how G-characters of a G-space sit in the dual space. This result has been obtained independently by Fakhoury [2, Théorème 6] with a different proof.

Theorem 1 uses this result to remove the hypothesis of separability from a Theorem of Effros [1, Theorem 6.3] which characterizes G-spaces amongst Lindenstrauss spaces in terms of the extreme points of the conjugate ball.

Our notation will follow that of [1]. V will always denote a real Lindenstrauss space and K the unit ball of V^* with the weak* topology. By a measure on K we will always mean a regular Borel measure. If μ is a measure on K then $\sigma\mu$ is the measure defined by $\sigma\mu(B) = \mu(-B)$ for Borel sets $B \subset K$. A family $\{v_i\}$ of measures on K is called pairwise singular if $v_i \wedge v_i = 0$ whenever $i \neq j$.

Lemma 1. Suppose V is a Lindenstrauss space, $\{\mu_i\}$ is a finite set of maximal probability measures on K such that the family $\{\mu_i\} \cup \{\sigma\mu_i\}$ is pairwise singular, and $\{\alpha_i\}$ is a finite set of real numbers with $|\alpha_i| \leq 1$ for all i. Then for any $\varepsilon > 0$ there exists $h \in V$, $||h|| \leq 1$, such that for all i

$$\mu_i(|h-\alpha_i|>\varepsilon)<\varepsilon$$
.

PROOF. Choose $\delta = \varepsilon^2/6$ and choose compact sets $K_i \subset K$ such that $\mu_i(K_i) > 1 - \delta$ and the family $\{K_i\} \cup \{-K_i\}$ is pairwise disjoint. Choose d con-

Received February 14, 1971

tinuous on K, ||d|| = 1, and $d(K_i) = \alpha_i$, $d(-K_i) = -\alpha_i$. Then $f(x) = \frac{1}{2}[d(x) - d(-x)]$ gives a function on K with the above properties of d, but which is also symmetric (f(x) = -f(-x)). Then

$$\mu_i(\bar{f}) = \mu_i(f) < \alpha_i + \delta$$

and

$$\sigma \mu_i(\bar{f}) < -\alpha_i + \delta$$

by maximality of μ_i and $\sigma \mu_i$ [5, Proposition 4.2]. Choose g concave and continuous on K so that $-1 \le \tilde{f} \le g \le 1$ and

$$\mu_i(g) < \alpha_i + \delta$$

 $\sigma \mu_i(g) < -\alpha_i + \delta$ [4, Chp. II, T36].

Then for $x \in E(K)$, $g(x) + g(-x) \ge f(x) + f(-x) = 0$. Choose $h \in V$ such that $h \le g$ on K [3, Theorem 2.1].

Let $N_i = \{g > \alpha_i + \epsilon\}$ and suppose $\mu_i(N_i) = \gamma \ge \epsilon/2$. Then if $\beta = \mu_i(K_i^c \cup N_i)$,

$$\mu_{i}(g) \geq \int_{K_{i} \cap N_{i}^{c}} g d\mu_{i} + \int_{N_{i}} g d\mu_{i} - \delta$$

$$\geq \alpha_{i}(1 - \beta) + (\alpha_{i} + \varepsilon)\gamma - \delta$$

$$= \alpha_{i}(1 + \gamma - \beta) + \varepsilon\gamma - \delta$$

$$\geq \alpha_{i} - 2\delta + \varepsilon^{2}/2 = \alpha_{i} + \delta \text{ (note } \gamma - \beta \geq -\delta),$$

a contradiction.

So $\mu_i(N_i) < \varepsilon/2$. Since $h \le g$

$$\mu_i(\{h > \alpha_i + \varepsilon\}) \leq \mu_i(N_i) < \varepsilon/2.$$

On the other hand

$$\mu_i(\{h < \alpha_i - \varepsilon\}) = \mu_i(\{-h > -\alpha_i + \varepsilon\}) =$$

$$\sigma\mu_i(\{h > -\alpha_i + \varepsilon\}) \le \sigma\mu_i(\{g > -\alpha_i + \varepsilon\}) < \varepsilon/2.$$

The last inequality follows by an argument similar to the above using the fact that $\sigma \mu_i(g) < -\alpha_i + \delta$.

PROPOSITION 1. If V is a G-space then the G-characters are the elements in RE(K).

PROOF. The proof of [1, Lemma 6.2] shows that any $x \in RE(K)$ is a G-character. Conversely suppose x is a G-character, ||x|| = 1 and $x \notin E(K)$. We will be fin-

ished if we obtain a contradiction. Choose a maximal probability measure μ on K with barycentre x. Since μ is maximal and $x \notin E(K)$, μ is not a point mass (one way to prove this is from [5, Proposition 4.2]), so there are maximal probability measures μ_1 and μ_2 on K and $\alpha_1, \alpha_2 > 0$, $\alpha_1 + \alpha_2 = 1$, so that $\mu = \alpha_1 \, \mu_1 + \alpha_2 \, \mu_2$ and $\mu_1 \wedge \mu_2 = 0$. Also $\mu \wedge \sigma \mu = 0$. Indeed $\omega = \mu \wedge \sigma \mu$ is symmetric ($\omega = \sigma \omega$), so has barycentre 0. Hence $\mu - \omega$ has barycentre x. Since $\|x\| = 1$ and $\mu - \omega$ lives on K, we have $\|\mu - \omega\| \ge 1$; since $0 \le \omega \le \mu$ we deduce $\omega = 0$. So $\{\mu_1, \mu_2, \sigma \mu_1, \sigma \mu_2\}$ is pairwise singular.

Using Lemma 1 with $\varepsilon = \alpha_1 \alpha_2 / 14$, choose $f, g \in V$, ||f|| = ||g|| = 1, so that

$$\mu_1(|f - \alpha_2| > \varepsilon) < \varepsilon$$
 $\mu_1(|g - 1| > \varepsilon) < \varepsilon$ $\mu_2(|f + \alpha_1| > \varepsilon) < \varepsilon$ $\mu_2(|g| > \varepsilon) < \varepsilon$.

Let $h = f \setminus g$ and define k on K by the formula

$$k(y) = f(y) \setminus g(y)$$
 for $y \in K$.

Then $h \in A$ and k is continuous, so the set $\{h = k\}$ is closed and contains E(K), so supports the maximal measures μ_1 and μ_2 . Hence

$$h(x) = \mu(h) = \alpha_1 \mu_1(h) + \alpha_2 \mu_2(h)$$

$$= \alpha_1 \mu_1(k) + \alpha_2 \mu_2(k)$$

$$> \alpha_1 [(\alpha_2 - \varepsilon)(1 - 2\varepsilon) - 2\varepsilon] + \alpha_2 [(-\varepsilon)(1 - \varepsilon) - \varepsilon]$$

$$= \alpha_1 \alpha_2 (1 - 2\varepsilon) - \alpha_1 (3\varepsilon - 2\varepsilon^2) - \alpha_2 (2\varepsilon - \varepsilon^2)$$

$$> \frac{\alpha_1 \alpha_2}{2} - 3\varepsilon - 2\varepsilon = 2\varepsilon.$$

The first inequality is obtained by noting that if $f(y) > \alpha_2 - \varepsilon$ and $g(y) > 1 - \varepsilon$ then $k(y) > \alpha_2 - \varepsilon$ and this happens except on a set of μ_1 -measure $< 2\varepsilon$; similarly $g(y) > -\varepsilon$ and therefore $k(y) > -\varepsilon$ except on a set of μ_2 -measure $< \varepsilon$; finally $k(y) \ge -1$ on the exceptional sets.

On the other hand since x is a G-character

$$h(x) = f(x) \downarrow g(x) = \mu(f) \downarrow \mu(g).$$

Now

$$|\mu(f)| = |\alpha_1 \mu_1(f) - \alpha_1 \alpha_2 + \alpha_2 \mu_2(f) + \alpha_1 \alpha_2|$$

$$\leq |\alpha_1| \mu_1(f) - |\alpha_2| + |\alpha_2| \mu_2(f) + |\alpha_1|$$

$$\leq |\alpha_1 2\varepsilon + |\alpha_2 2\varepsilon| = |2\varepsilon|.$$

The last estimate is an easy consequence of the assumptions on f. So

$$|h(x)| = |\mu(f) \setminus \mu(g)| \leq 2\varepsilon,$$

a contradiction.

THEOREM 1. If V is a Lindenstrauss space then the following are equivalent.

- (1) The structure topology on $E_{\sigma}(K)$ is Hausdorff.
- (2) The closure Z of E(K) is contained in [0,1]E(K).
- (3) V is a G-space.

PROOF. (1) \Rightarrow (2) \Rightarrow (3) is proved in [1, Theorem 6.3].

- (3) \Rightarrow (2). From Lemma 1 $[0,1]E(K) = \{G\text{-characters}\} \cap K$ and is therefore weak* closed.
- (2) \Rightarrow (1). Suppose e_1 and e_2 are in E(K) and give different points in $E_{\sigma}(K)$; so $e_1 \neq \pm e_2$. Choose f and g in V such that

$$f(e_1) = f(e_2) = 1 = g(e_1) = -g(e_2).$$

Let D_1 (resp. D_2) be the subset of [0,1]E(K) on which f and g have the same (resp. different) sign. Precisely

$$D_1 = \big\{ p \in [0,1] E(K) \colon f(p) > 0 \Rightarrow g(p) \geqq 0 \text{ and } f(p) < 0 \Rightarrow g(p) \leqq 0 \big\},$$

$$D_2 = \{ p \in [0, 1] E(K) : f(p) > 0 \Rightarrow g(p) \le 0 \text{ and } f(p) < 0 \Rightarrow g(p) \ge 0 \}.$$

The D_i are clearly symmetrically dilated and are weak* compact since [0,1]E(K) is weak* closed. So by [1, Theorem 5.8] $D_i \cap E(K)$ is structurally closed for i=1,2. Clearly $e_1 \notin D_2$, $e_2 \notin D_1$ and $E(K) \subset D_1 \cup D_2$. Thus the sets $E(K) - D_i$ are symmetric and structurally open and separate e_1 and e_2 .

REFERENCES

- 1. E. Effros, On a class of real Banach spaces, Israel J. Math. 9 (1971), 430-458.
- 2. H. Fakhoury, C.R. Acad. Sc., Paris 271 (1970), 941-944.
- 3. A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are L_1 spaces and their representing matrices, (to appear).
 - 4. P. A. Meyer, Probabilités et potentiel, Hermann, Paris (1966).
 - 5. R. Phelps, Lectures on Choquet's Theorem, Van Nostrand, Princeton N.J. (1966).

QUEEN'S UNIVERSITY,

KINGSTON, ONTARIO, CANADA